

6-7 April, 2016 Amphitheatre Paris-Sorbonne, France

Lepton number violation and basic neutrino properties

Andrea Giuliani

CNRS/CSNSM, Orsay, France

Outline

- The neutrino mass scale
- Single beta decay and neutrino mass
- Double beta decay: neutrino mass and LNV
- > Double beta decay: experimental status and prospects
- Double beta decay: open issues

The absolute neutrino mass scale

Cosmology, **single** and **double** β **decay** measure different combinations of the neutrino mass eigenvalues, constraining the **neutrino mass scale**

$\langle N \beta \rangle$

Direct v mass measurement

use $E^2 = p^2c^2 + m^2c^2 \rightarrow m^2(v)$ is the observable

Use low Q-value beta-like processes and study endpoint of electron or γ spectrum

In red, projects located in EU

KATRIN concept

Thanks to Ch. Weinheimer

KATRIN status

differential pumping section: commissioning at KIT

- Commissioning of spectrometer & detector SDS IIb finished in August 2015
- Commissioning of tritium source & transport section: up to summer 2016
- Tritium data taking: start in 2016
- sensitivity: 200 meV

Thanks to Ch. Weinheimer

KATRIN and light sterile neutrinos

How to improve KATRIN

Project 8

Measure the coherent cyclotron radiation from tritium β electrons

- ✓ Detection of single electron succesfull.
- ✓ But: is the experiment scalable?
- ✓ Systematics?

Thanks to Ch. Weinheimer

How to improve KATRIN: time of flight

TOF spectrum is sensitive to neutrino mass

The difficulty is to measure START without disturbing electron energy at the 10 meV level

Interesting possibility: **use Project8 technology** for START measurement

→ factor 5 in ∆m(v)²stat under ideal cond.

Thanks to Ch. Weinheimer

$\langle N_{\beta\beta} \rangle$

Neutrinoless double beta decay (0v2β): standard and non-standard mechanisms

 $0\nu 2\beta$ is a test for « creation of leptons »: $2n \rightarrow 2p + 2e^- \Rightarrow LNV$

This test is implemented in nuclear matter: (A,Z) \rightarrow (A,Z+2) + 2e⁻

Energetically possible for ~40 nuclei Only a few are experimentally relevant

Standard mechanism: neutrino physics

 0v2β is mediated by light massive Majorana neutrinos (exactly those which oscillate)

Non-standard mechanism: BSM, LNV

Not necessarily neutrino physics

standard and non-standard mechan, ment 2β is a test for « creation of leptons »: $2n \rightarrow periodic LNV$ s test is implemented in the nuclear m $2) \rightarrow (A, Z+2) + 2e^{-1}$ rgetically possible for ~40 α few are experiment periodic ant β β of β β Neutrinoless double beta decay ($0v2\beta$)

 $0v2\beta$ is a test for « creation of leptons »:

This test is implemented in the nuclear p $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$

Energetically possible for ~40 Only a few are experiment

(those which oscillate)

ovanis not ovanis not Non-standard mechanism: BSM, LNV Not necessarily neutrino physics

Why it is important to test LNV

L and B are accidentally conserved in the SM Effective theory: $\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \dots + \frac{1}{\Lambda^5} \mathcal{L}_9$ dim 5 dim 4 dim 6 dim 9 Majorana Proton LNV mass term, decay Seesaw LNV Light Majorana v_{μ} Heavy Majorana N_R Baryogenesis (Leptogenesis) \Rightarrow **B (L) violation**

B, L often connected in GUTs

GUTs have Majorana neutrinos and seesaw

Standard mechanism

How **0v-DBD** is connected to **neutrino mixing matrix** and **masses** in case of process induced by light v exchange (mass mechanism). Axial vector neutrinoless Double Beta Decay **rate** $1/\tau = G(Q,Z) g_A^4 |M_{nucl}|^2 \langle M_{\beta\beta} \rangle^2$

Standard mechanism

How **0v-DBD** is connected to **neutrino mixing matrix** and **masses** in case of process induced by light v exchange (**mass mechanism**).

 $\langle \mathbf{M}_{\beta\beta} \rangle = | |U_{e1}|^2 M_1 + e^{i\alpha_1} | U_{e2}|^2 M_2 + e^{i\alpha_2} |U_{e3}|^2 M_3 |$

$\langle M_{\beta\beta} \rangle$ vs. lightest v mass

Status

Current-generation experiments

Strategic milestone

Strategic milestone

Factors guiding isotope selection

 \nearrow Phase space: G(Q,Z) \propto Q⁵

Q is the crucial factor

Background

Isotope choice and nuclear matrix elements

Isotope and background

Possible routes to 1 ton

Collaborations are already thinking to improve/upgrade their technology in view of 1 ton set-up

Wait 2-3 years for a sensible decision

Possible routes to 1 ton

- SNO+ (¹³⁰Te 200 kg) SNO+ (¹³⁰Te 800 kg)
- ➤ KamLAND-Zen → KamLAND2-Zen (1 ton ¹³⁶Xe, higher energy resolution, pressurized Xe)

Scalability

High High Low energy resolution 250 keV FWHM 80 keV FWHM

²¹⁴Bi line not resolved from $0\nu 2\beta$ ¹³⁶Xe signal

- > EXO-200 → nEXO (5 ton liquid ¹³⁶Xe TPC) 136
- > NEXT-100 \rightarrow BEXT (1-3 ton high pressure ¹³⁶Xe TPC)
- Crystal source way Extreme background demand (10⁻⁴ counts/keV/kg/y at 2 MeV)
 - **GERDA 2** \rightarrow **GERDA+MAJORANA** \rightarrow 1 ton ⁷⁶Ge (Ge diodes)

It is problematic to reach the 1 ton scale with the **External source** Crystallization approach (SuperNEMO), but the use of a high promising isotope as ¹⁵⁰Nd could partially compensate for the lower mass In red, projects located in EU

Impact of enrichment cost

Isotope	Abundance	Price/ton [M\$]
⁷⁶ Ge	7.61	~ 80
⁸² Se	8.73	~ 80
¹⁰⁰ Mo	9.63	~ 80
¹¹⁶ Cd	7.49	~ 180
¹³⁰ Te	34.08	~ 20
¹³⁶ Xe	8.87	\sim 5-10
¹⁵⁰ Nd (?)	5.6	> 200

Adapted from A. Barabash J. Phys. G: Nucl. Part. Phys. 39 (2012) 085103

Not always really 1 ton:CUPID 130 Te- 0.54 tons- sensitivity: 6-15 meV in 10 yCUPID 100 Mo- 0.21 tons- sensitivity: 6-17 meV in 10 y

Down-selection process in the US

http://science.energy.gov/~/media/np/nsac/pdf/docs/2016/NLDBD_Report_2015_Final_N ov18.pdf REPORT TO THE NUCLEAR SCIENCE ADVISORY COMMITTEE Neutrinoless Double Beta Decay NOVEMBER 18, 2015

Therefore the subcommittee strongly recommends that R&D efforts aimed at solving specific technical issues relevant to the downselect decision be supported. 2-3 years time scale

The subcommittee strongly urges continuation of longer term R&D necessary for the future development of the subject in addition to the support of shorter term R&D aimed at a near future downselect.

There is clearly substantial, and growing, international interest in NLDBD. The decision by the US community on its strategy for the next generation experiment will necessarily involve consideration of the international context. Coordination with the international community will clearly be a necessary component in future decisions on technology selection.

NSAC recommandations:

RECOMMENDATION II

The excess of matter over antimatter in the universe is one of the most compelling mysteries in all of science. The observation of neutrinoless double beta decay in nuclei would immediately demonstrate that neutrinos are their own antiparticles and would have profound implications for our understanding of the matterantimatter mystery.

We recommend the timely development and deployment of a U.S.-led ton-scale

Strategic milestone

Strategic milestone

g_A quenching

$$1/\tau = G(Q,Z) g_A^4 |M_{nucl}|^2 \langle M_{\beta\beta} \rangle^2$$

g_A quenching

 $1/\tau = G(Q,Z) g_A^4 |M_{nucl}|^2 \langle M_{\beta\beta} \rangle^2$

dramatic , ri et al. realized J. Barea uenched in $2v2\beta$ $cner \beta$ -like processes et al., Phys. Rev. C 87, 014315 (2013) 1 et al., Physics Letters B 729 (2014) 27–32 Kotila et al., Phys. Rev. C 85, 034316 (2012) Evaluate M_{2v}^{eff} from experiments $-\left[T_{1/2}^{2\nu,exp}\right]^{-1} = G_{2\nu}|M_{2\nu}^{eff}|^2$ \checkmark Compare $M_{2\nu}^{\text{eff}}$ (exp) with $M_{2\nu}$ (theo) ✓ Observe that M_{2v}^{eff} (exp) < M_{2v} (theo) \checkmark Rescale g_A to explain the difference $g_{A,eff} \sim 0.6 - 0.8$ (depending on model) q_{A.eff} = 1.269A^{-γ}

- IBM-2: γ = 0.18
- QRPA: γ = 0.16
- ISM: γ = 0.12

g_A quenching impact

g_A quenching impact

But

Is g_A renormalization the same for $2\nu 2\beta$ decay and $0\nu 2\beta$?

It depends on the reason of the quenching, up to now poorly understood.

If the quenching depends on the limited model space in which the calculation is done, it could be common to both. However...

Unlike $2\nu 2\beta$, $0\nu 2\beta$ is characterized by:

- \checkmark All the states of the intermediate nucleus contribute (while only 1+(GT) multipoles contribute to $2\nu 2\beta$ decay)
- \checkmark Large momentum transfer $p \sim m_{\pi}$
 - \Rightarrow Chiral EFTs seem to show that indeed $g_{A,eff}$ increases as *p* increases J. Menendez et al., Phys. Rev. Lett. 107, 062501 (2011)

No quenching is needed to describe $\boldsymbol{\mu}$ capture rate on nuclei, where $p \sim m_u$ as in $0\nu 2\beta$ decay

N.T. Zinner et al., Phys.Rev. C74 (2006) 024326

NUMEN

F. Cappuzzello et al., J. Phys. Conf. Ser., 012018 (2015)

Some could be

unquenched or

even enhanced

Program for g_{A} issue

- ✓ Study nuclear reactions with **Double Charge Exchange**
- ✓ Further theoretical studies using **chiral EFTs**
- \checkmark New proposed method: dependence on g_A of **spectral shape** in forbidden β decays

M. Haaranen et al., Phys. Rev. C 93, 034308 (2016)

But.

Program f ider BAA than a sale where Stu Consider that theory is a sale where is

M. Haaranen et al., Phys. Rev. C 93, 034308 (2016)

Impact of cosmology on $\langle M_{\beta}\rangle\,$ and $\langle M_{\beta\beta}\rangle$

Recently, very strong limits have been set on Σ from cosmological observations Initial Planck result using only CMB data:

$\Sigma <$ 0.66 eV (95% C.L.)

The result improves adding other cosmological probes, i.e. BAO:

$\Sigma <$ 0.23 eV (95% C.L.)

Very recently, combining CMB, Lyman α forest, BAO

Σ < 0.14 eV (95% C.L.)

N. Palanque-Delabrouille et al., JCAP 1502, 045 (2015)

Impact of cosmology on $\langle M_{\beta} \rangle$ and $\langle M_{\beta\beta} \rangle$

Impact of cosmology on $\langle M_{\beta}\rangle\,$ and $\langle M_{\beta\beta}\rangle$

The situation becomes more controversial when adding results on Large Scale Structure

$\Sigma = 0.32 \text{ eV} \pm 0.081 \text{ eV}$

R. A. Battye and A. Moss, Phys. Rev. Lett. 112, 051303 (2014)

Similar results from an other analysis (BOSS collaboration)

Mon.Not.Roy.Astron.Soc. 444 (2014) 3501

Impact of cosmology on $\langle M_{\beta} \rangle$ and $\langle M_{\beta\beta} \rangle$

Non standard mechanism

Other mechanisms are however possible Beyond the Standard Model (BSM):

- ✓ heavy neutrinos
- ✓ right-handed currents
- ✓ non standard Higgs
- ✓ SUSY

✓ ...

LNV but not necessarily neutrino masses

The famous Scheckter-Valle « theorem » implies Majorana masses of the order 10⁻²⁴ eV

Interplay with search for LNV at LHC \Rightarrow e⁻ e⁻ + di-jet signal

Several works appear recently about $0\nu 2\beta \Leftrightarrow LHC$

Light sterile neutrinos

 $\langle \mathbf{M}_{\beta\beta} \rangle = ||U_{e1}||^2 M_1 + e^{i\alpha 1} |U_{e2}||^2 M_2 + e^{i\alpha 2} |U_{e3}||^2 M_3 || + e^{ia 3} |U_{e4}||^2 M_4 ||$

Conclusions

$\langle M_{\beta} \rangle$

- ➢ KATRIN will take date in 2016, with sensitivity 0.2 eV
- R&D in progress with low temperature calorimeters and Project8
- Ideas to improve KATRIN

$\langle M_{\beta\beta} angle$ - LNV

- Klapdor's claim strongly disfavored by GERDA 1
- Present sensitivity in the 150-400 meV range: GERDA–1, EXO, KamLAND-Zen, CUORE-0
- Current experiments will approach the inverted hierarchy region: GERDA–2, CUORE, EXO-200, KamLAND-Zen, SNO+
- ~10 kg demonstrators will aim to validate new technologies in: SuperNEMO demonstrator, NEW (NEXT-10), LUCIFER+LUCINEU, AMORE
- > Towards the "1 ton scale": nEXO, CUPID, BEXT, GERDA+MAJORANA, KamLAND-Zen2
- g_A quenching, impact of cosmology, interplay with LHC are emerging issues

Fluid-embedded source

	Helpful	Harmful
	Strengths	Weaknesses
Internal Origin	 Source=Detector Scalability Large compatibility with isotope ¹³⁶Xe Compatibility with isotope ¹³⁰Te Possibility of extreme purification of fluids Fiducialization, delayed coincidence, tracking, single vs multisite events for background reduction (according to technique) 	 In most of technologies, low energy resolution No compatibility with high Q-value (> 2615 keV) isotopes In "dilution approach" (SNO+, KamLAND) low efficiency (isotope mass much smaller than active mass)
	Opportunities	Threats
	 Use of existing facilities (SNO+, KamLAND, Borexino) Use of well-established technologies (liquid scintillators, TPC) 	

Crystal source

	Helpful	Harmful
	Strengths	Weaknesses
Internal Urigin	 Source=Detector Modularity Compatibility with numerous isotopes (⁷⁶Ge, ¹⁰⁰Mo, ⁸²Se, ¹¹⁶Cd – the last three with Q-values > 2615 keV) High energy resolution High efficiency Particle- or event-type discrimination 	 No tracking Scalability possible but costly and complicated Complicated enrichment-crystallization-purification chain
external Urigin	Opportunities	Threats
	Well-studied precursors (Heidelberg Moscow, IGEX, Cuoricino, CUORE-0)	

External source

	Helpful	Harmful
Internal Origin	 Strengths Modularity Compatibility with all isotopes in principle Full event reconstruction Information on the mechanism Excellent opportunity to study Majoron mode 	 Weaknesses Low efficiency Low energy resolution Scalability possible but with high cost and space occupation
External Origin	Opportunities	Threats
	Well-studied precursor (NEMO3)	Risk of insufficient underground space (or necessity of use of multiple underground laboratories)

Almost background free isotopes!

BUT

Low isotopic abundance and problematic enrichment (good news about Nd)

Better studied with source≠detector (tracko-calo approach) (SuperNEMO)

CaF₂ scintillators (and in principle bolometers) are interesting for ⁴⁸Ca (CANDLES)

